If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1k^2+11k+30=0
We add all the numbers together, and all the variables
k^2+11k+30=0
a = 1; b = 11; c = +30;
Δ = b2-4ac
Δ = 112-4·1·30
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-1}{2*1}=\frac{-12}{2} =-6 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+1}{2*1}=\frac{-10}{2} =-5 $
| 3(4x+5)=-5(5x-4)+4x | | 3(4x+1)=-3(2x-5)-5x | | 4(2x+2)=4x-8-x | | 20+8x-6=2+9x | | 20=x/5+7 | | 40+×=2x+10 | | 4/3x-2=-14 | | 3(4x+2)=-2(5x-4)-5x | | 4(3x+2)=-4(4x-3)+3x | | .13x=22 | | 100=10x^2 | | 3x-4+0,2x=15+1,2x+21 | | 36-(3c+4)=2(c | | 13-z=8,z=4 | | a-1=6,a=8 | | 3(4x+4)=-4(2x-5)+3x | | x/7=85 | | (2/5)b+4=6 | | 30/5=h,h=6 | | 3{4x+5}=33 | | 8z=48,z=7 | | (2^x+10)/4=9/2^(x-2 | | 3(x-3)=15x-9-12x | | 248+m=259 | | 2(3x+1)=-5(3x-1)-4x | | 2(5x+5)=-3(3x-5)-4x | | 6n^2+19n-10=-3 | | 2x-10=3x-63 | | -6(9x+)-3x+4x=-408+x | | 8/i=1,i=8 | | -3+2/3x-1=1/3x-4 | | x+x+7=16,x=4 |